Qus : 2 nimcet PYQ 1 Angle of elevation of the top of the tower from 3
points (collinear) A, B and C on a road leading to the
foot of the tower are 30°, 45° and 60°, respectively.
The ratio of AB and BC is
1 $\sqrt(3):1$ 2 $\sqrt(3):2$ 3 $1:\sqrt(3)$ 4 $2:\sqrt(3)$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2020 PYQ Solution According to the given information, the figure should be as follows.
Let the height of tower = h
Qus : 5 nimcet PYQ 1
Number of point of which f(x) is not differentiable $f(x)=|cosx|+3$ in $[-\pi, \pi]$
1 2 2 3 3 4 4 None of these Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2023 PYQ Solution
Points of Non-Differentiability of \( f(x) = |\cos x| + 3 \)
Step 1: \( \cos x \) is differentiable everywhere, but \( |\cos x| \) is not differentiable where \( \cos x = 0 \).
Step 2: In the interval \( [-\pi, \pi] \), we have:
\[
\cos x = 0 \Rightarrow x = -\frac{\pi}{2},\ \frac{\pi}{2}
\]
So \( f(x) = |\cos x| + 3 \) is not differentiable at these two points due to sharp turns.
✅ Final Answer:
\( \boxed{2 \text{ points}} \)
Qus : 6 nimcet PYQ 2 If A > 0, B > 0 and A + B = $\frac{\pi}{6}$ , then the minimum value of $tanA + tanB$
1 $$\sqrt{3}-\sqrt{2}$$
2 $$\sqrt{3}-2\sqrt{3}$$ 3 $$\frac{2}{\sqrt{3}}$$ 4 $$\sqrt{2}-\sqrt{3}$$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2019 PYQ Solution On differentiating x= tanA + tan(π/6-A)
we get :
dx/dA = sec²A-sec²(π/6-A)
now putting
dx/dA=0
we get
cos²(A) = cos²(π/6-A) so 0≤A≤π/6
therefore
A=π/6-A from here we get A = π/12 = B
so minimum value of that function is
2tanπ/12 which is equal to 2(2-√3)
Qus : 10 nimcet PYQ 4 The value of $\tan \Bigg{(}\frac{\pi}{4}+\theta\Bigg{)}\tan \Bigg{(}\frac{3\pi}{4}+\theta\Bigg{)}$ is
1 -2 2 2 3 1 4 -1 Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2024 PYQ Solution
We are given:
\[
\text{Evaluate } \tan\left(\frac{\pi}{4} + \theta\right) \cdot \tan\left(\frac{3\pi}{4} + \theta\right)
\]
✳ Step 1: Use identity
\[
\tan\left(A + B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
\]
But we don’t need expansion — use known angle values:
\[
\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta}
\]
\[
\tan\left(\frac{3\pi}{4} + \theta\right) = \frac{-1 + \tan\theta}{1 + \tan\theta}
\]
✳ Step 2: Multiply
\[
\left(\frac{1 + \tan\theta}{1 - \tan\theta}\right) \cdot \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right)
\]
Simplify:
\[
= \frac{(1 + \tan\theta)(-1 + \tan\theta)}{(1 - \tan\theta)(1 + \tan\theta)}
= \frac{(\tan^2\theta - 1)}{1 - \tan^2\theta} = \boxed{-1}
\]
✅ Final Answer:
\[
\boxed{-1}
\]
Qus : 11 nimcet PYQ 4 If $\sin x=\sin y$ and $\cos x=\cos y$, then the value of x-y is
1 $\pi/4$ 2 $n \pi/2$ 3 $n \pi$ 4 $2n \pi$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2024 PYQ Solution
Given:
\[
\sin x = \sin y \quad \text{and} \quad \cos x = \cos y
\]
✳ Step 1: Use the identity for sine
\[
\sin x = \sin y \Rightarrow x = y + 2n\pi \quad \text{or} \quad x = \pi - y + 2n\pi
\]
✳ Step 2: Use the identity for cosine
\[
\cos x = \cos y \Rightarrow x = y + 2m\pi \quad \text{or} \quad x = -y + 2m\pi
\]
? Combine both conditions
For both \( \sin x = \sin y \) and \( \cos x = \cos y \) to be true, the only consistent solution is:
\[
x = y + 2n\pi \Rightarrow x - y = 2n\pi
\]
✅ Final Answer:
\[
\boxed{x - y = 2n\pi \quad \text{for } n \in \mathbb{Z}}
\]
Qus : 12 nimcet PYQ 1 If $a_1, a_2, a_3,...a_n$, are in Arithmetic Progression
with common difference d, then the sum $(sind) (cosec a_1 . cosec a_2+cosec a_2.cosec a_2+...+cosec a_{n-1}.cosec a_n)$ is equal to
1 $$cot a_1 - cot a_n$$ 2 $$sin a_1 - sin a_n$$ 3 $$cosec a_1 - cosec a_n$$ 4 $$a_1-a_n$$ Go to Discussion nimcet Previous Year PYQ nimcet NIMCET 2022 PYQ
Solution [{"qus_id":"3791","year":"2018"},{"qus_id":"3764","year":"2018"},{"qus_id":"3904","year":"2019"},{"qus_id":"3920","year":"2019"},{"qus_id":"4281","year":"2017"},{"qus_id":"4283","year":"2017"},{"qus_id":"4284","year":"2017"},{"qus_id":"4285","year":"2017"},{"qus_id":"9466","year":"2020"},{"qus_id":"9467","year":"2020"},{"qus_id":"9468","year":"2020"},{"qus_id":"9469","year":"2020"},{"qus_id":"9470","year":"2020"},{"qus_id":"9471","year":"2020"},{"qus_id":"9472","year":"2020"},{"qus_id":"9473","year":"2020"},{"qus_id":"9477","year":"2020"},{"qus_id":"10432","year":"2021"},{"qus_id":"10667","year":"2021"},{"qus_id":"10674","year":"2021"},{"qus_id":"10682","year":"2021"},{"qus_id":"10686","year":"2021"},{"qus_id":"10707","year":"2021"},{"qus_id":"11121","year":"2022"},{"qus_id":"11122","year":"2022"},{"qus_id":"11143","year":"2022"},{"qus_id":"11512","year":"2023"},{"qus_id":"11526","year":"2023"},{"qus_id":"11535","year":"2023"},{"qus_id":"11640","year":"2024"},{"qus_id":"11641","year":"2024"},{"qus_id":"10201","year":"2015"},{"qus_id":"10212","year":"2015"},{"qus_id":"10229","year":"2015"},{"qus_id":"10237","year":"2015"},{"qus_id":"10452","year":"2014"},{"qus_id":"10462","year":"2014"},{"qus_id":"10476","year":"2014"},{"qus_id":"10480","year":"2014"}]